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We analyze the statistics of the electromagnetic radiation emitted from electrons pushed through a quantum
point contact. We consider a setup implemented in a two-dimensional �2D� electron gas where the radiation
manifests itself in terms of 2D-plasmons/photons emitted from electrons scattered at the point contact. The
bosonic statistics of the photons compete with the fermionic statistics of the electrons; as a result, the quantum
point contact emits nonclassical radiation with a statistics which can be tuned from bunching to anti-bunching
by changing the driving voltage. Our perturbative calculation of the irreducible two-photon probability cor-
relator provides us with information on the statistical nature of the emitted photons and on the underlying
electronic current flow.
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I. INTRODUCTION

The interest in photon radiation from a quantum point
contact �QPC� is twofold: on the one hand, the quantum
point contact acts as a source of nonclassical light.1,2 While a
classical current produces photons with Poisson statistics,3

the current pushed through a QPC can be tuned to radiate
photons with either super or subpoissonian statistics,1,2 testi-
fying for the bosonic nature of the photons �bunching� or the
fermionic statistics �antibunching� of the underlying elec-
trons radiating these photons, e.g., as “Bremsstrahlung” ra-
diation in back-reflection processes. On the other hand, the
radiation statistics contains information on the statistics of
current fluctuations across the QPC—as such, the photode-
tector serves as a tool to probe the nearby current flow in the
mesoscopic wire.4,5 Both themes have attracted considerable
interest, be it in the context of the counting statistics of elec-
trons in phase coherent mesoscopic conductors,6–8 where
higher-order correlators carry the signatures of interactions,
or be it related to the search for new sources of nonclassical
radiation.1,2

The classic photodetection theory for optical photons goes
back to Glauber3 and is based on a threshold detector, where
each �sufficiently energized� photon induces an electronic
cascade generating a counting signal. The theory has been
widely applied in the optical regime where threshold ener-
gies reside in the eV regime. The analysis of the photon
counting statistics in Refs. 1 and 2 has been based on this
photodetection theory and has concentrated on the regime,
where the energy of emitted photons is larger then eV /2,
with V the voltage bias applied to the quantum point contact.
For this situation, the emitted photons are antibunched, since
they are produced by different electrons scattered by a QPC.

The application of Glauber’s theory to mesoscopic setups
is not straightforward, however, as typical photons generated
in a mesoscopic structure have energies in the GHz regime
and it may be difficult to construct a stable photodetector
with a correspondingly small threshold energy. Furthermore,
the emission rate of free photons scales with the small factor
��vF /c�2�10−8, where � is the fine structure constant, vF is
the Fermi velocity, and c the velocity of light, rendering the

observation of free photons practically impossible.
On the other hand, within a mesoscopic context, the low-

energy exchange between a quantum point contact and the
electromagnetic environment can be studied with a double-
dot detector.9,10 An experimental setup has been introduced
recently,11 telling apart the different statistics of the low-
energy �GHz� radiation from a thermal �50 �� resistor and a
coherent �microwave� source. Furthermore, the recent ex-
perimental test of high-frequency shot noise in a quantum
point contact12 also provides a technique allowing for the
generation and analysis of nonclassical photons in the micro-
wave domain. Below, we study a setup inspired by these
recent experiments,12 where plasmons emitted from the QPC
are transformed into electromagnetic modes and then ana-
lyzed in a power detector, cf. Figure 1. The emission rate for
plasmons is enhanced over that of free photons by a factor
�c /vpl�3�106, where vpl denotes the plasmon velocity; this
gain in signal has to be preserved by proper impedance
matching of the waveguides and the quantum point contact.
Apart from determining the coupling between the QPC cur-
rent and the bosonic electromagnetic modes, we can ignore
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FIG. 1. Quantum point contact �QPC� fabricated through gates
constricting the electron flow in a two-dimensional electron gas
�2DEG�. We consider a quasi-1D setup where the width w of the
2DEG allows propagation of one transverse mode; d is the distance
to the back gate. The voltage �V� driven quantum point contact
emits 2D plasmons with frequencies �1 and �2 due to electron
backscattering �t and r denote transmission and reflection ampli-
tudes�. These plasmons are picked up by waveguides transmitting
the signal �photons� to the measurement setup. The measurement of
the one-�P1���� and two-photon �P2��1 ,�2�� emission probabili-
ties allows to characterize the radiation and provides information on
the fourth-order current correlator.
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the difference between longitudinal density waves �plas-
mons� in the two-dimensional electron gas �2DEG� and
transverse electromagnetic waves �photons� propagating in
free space; in the following, we will refer to these bosonic
modes as photons.

Below, we present a perturbative calculation �in the QPC–
electromagnetic field coupling� of the one-�P1���� and two-
photon �P2��1 ,�2�� probabilities for emission at given fre-
quencies � , �1,2 and during an arbitrary but fixed time t0.
Within our perturbative approach, we calculate the irreduc-

ible probability correlator P̄2��1 ,�2�= P2��1 ,�2�
− P1��1�P1��2�. The sign of this quantity then tells us about
the character of the emitted radiation, bunching or antibunch-
ing. E.g., a positive sign indicates that photons prefer to be
emitted simultaneously rather then independently and thus
are bunched, while for a negative sign the opposite situation

of anti-bunching prevails; for P̄2��1 ,�2�=0 the two photons
are emitted independently. As we will show below, changing
the bias on the quantum point contact will allow to change
the statistics from antibunched fermionic type to bunched
bosonic type. Furthermore, for different frequencies �1

��2, the quantity P̄2��1 ,�2� is directly proportional to the
irreducible fourth-order current correlator and hence its mea-
surement provides valuable insight into the fluctuation statis-
tics of the current across the quantum point contact.

In the following, we first define the model and find the
expressions for the probability densities p1��� and
p2��1 ,�2� expressed through current correlators within a
perturbative expansion, see Sec. II. In a second step, these
probability densities are rewritten through the second and
fourth order irreducible noise correlators S�2� and S�4�. In Sec.
III, we combine results for the probability densities and the
noise correlators to find the single photon emission probabil-
ity P1���= p1���d�, the correlated two-photon emission
probability P2��1 ,�2�= p2��1 ,�2�d�1d�2, as well as the

irreducible quantity P̄2��1 ,�2�; we identify the regimes of
antibunching at intermediate voltages and the competition
between anti-bunching and bunching at high voltage, when
one electron has sufficient energy to emit two �bunched�
photons. In Sec. IV, we discuss the interrelation between the
fourth-order current correlator and the irreducible correlator

P̄2��1 ,�2� and we conclude in Sec. V.

II. PHOTON EMISSION PROBABILITIES

In this section, we derive the formal expressions for the
probability densities p1��� and p2��1 ,�2� to emit one or
two photons �plasmons� at frequencies � , �1,2 during a
given time and express the results through the second and
fourth-order current correlators. We begin with a short sketch
describing the origin of the interaction Hamiltonian

Ĥint = −
1

c
� d3rĵ�r� · Â�r� , �1�

where ĵ�r� describes the electronic current density through

the QPC and Â�r� is the electromagnetic field associated
with the plasmon modes.

The 2D plasmons are collective bosonic modes describing
the coupled modulation of the electronic density and the
electric field. The displacement field u�R , t� of electrons gen-
erates the density modulation �n�R , t�=n�R , t�−n0
=n0� ·u�R , t�, where n0 is the average electron density and
R= �x ,y�. The modulation of the electron charge generates a
three-dimensional electrostatic potential obeying Poisson’s
equation ���r , t�=4�e�n�r , t���z�. The electrostatic energy
of the electron gas is given by Eels=
−e	d2R�n�R , t���x ,y ,z=0, t�, while the kinetic energy of
the electrons associated with the density wave is given by
Ekin= �n0m /2�	d2Ru̇2�R , t�. The total Hamiltonian is a qua-
dratic function of the displacement field u and can be quan-
tized in the usual manner. For a 2DEG in free space �e.g.,
electrons trapped on a liquid Helium surface13�, this proce-
dure results in a square root energy-momentum dispersion
�k	
k of plasmon excitations. For the case where the elec-
tric field is screened,14,15 e.g., by a metallic gate separated
from the 2DEG by a distance d, the plasmonic energy dis-
persion assumes a linear form �k=vplk for kd
1, with vpl
the plasmon velocity.

The scattering of the electric current flowing through the
QPC causes an additional density modulation �nj�R , t� of the
2DEG. As a result, quantizing the plasmon modes one has to
solve the Poisson equation due to the combined charge fluc-
tuations, ���r , t�=4�e��npl�R , t�+�nj�R , t����z�, resulting
in the electrostatic energy

Eels = − e� d2R��npl�R,t� + �nj�R,t�� � ��pl�R,t� + �j�R,t�� ,

where �pl and �j are the electrostatic potentials associated
with the density modulations �npl and �nj, respectively. The
terms 	�pl�npl and 	�j�nj describe the plasmon energy and
the inductive energy of the external current, respectively,
while the cross terms 	��j�npl+�pl�nj� quantify the interac-
tion between the plasmons and the external current density.

Rather then solving the above coupled problem in detail,
we note that the Fermi velocity vF is typically much smaller
than that of plasmons, vF /vpl
1, and we have a separation
of scales between the two density waves; as a consequence,
the resulting interaction between the plasmon modes and the
electric current is small and well localized near the QPC.
Furthermore, we can �using a gauge transformation �→A�
rewrite the interaction into the form Eq. �1� and insert the

separate fields j�r� and Â�r� describing the electrons and the
plasmons.

To fix ideas, we consider plasmon modes propagating
along the one-dimensional wire �the x direction� and restrict
ourselves to the lowest transverse mode only �we assume
translation invariance along the y direction�. The vector po-

tential Â�x� then has only a component along x,

Âx�x� = �
k

ik�� 2�
c2

�kLquant

1/2

�ĉke
ikx − ĉk

†e−ikx� , �2�

where ĉk
† �ĉk� are bosonic creation �annihilation� operators

for the �longitudinal� plasmon modes with wave vector k.
The presence of a nearby backgate15 �with distance d� gen-
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erates a linear dispersion �k=vplk �Ref. 15� and ��
d /w is
a geometrical factor with w the width of the 2DEG. In the
following, we set the quantization length Lquant equal to
unity.

With the current operator ĵx�r�= Î�x��3�r−xex� in the wire,

the Hamiltonian Ĥint in the interaction representation takes
the form

Ĥint�t� = − i��
k

k�2�


�k

1/2

�ĉkÎk�t�e−i�kt − ĉk
†Îk

†�t�ei�kt� , �3�

where Îk�t� is the spatial average of the current Î�x , t� over
the coupling region of the plasmon described by the kernel
f�x� with extension L,

Îk�t� =� dxÎ�x,t�f�x�eikx. �4�

In a typical situation, the frequency of the excited plasmons
lies in the GHz range, with the velocity vpl roughly 100 times
slower than the speed of light c. The corresponding wave-
length �pl�100 �m then is much larger than the size
�0.1 � of the quantum point contact. Assuming a coupling
region 0.1 �m�L��pl, we can ignore the k dependence in

Îk�t�.
In a specific experiment, the dimensionless coupling �

	 �e2 /
vpl��vF /vpl�2 deriving from the above analysis, cf. Eq.
�22�, is reduced when plasmons are converted to photons
propagating in the waveguides for further analysis. In the
experiment of Ref. 12, the wavelength of the plasmons in-
volved is even larger than the sample’s size; in this case the
charge fluctuations generated at the QPC are directly coupled
into the transmission lines. Hence, the precise numerical
value of the coupling between the QPC and the photons ana-
lyzed in the measurement setup has to be determined for the
specific situation at hand. Furthermore, we note that the re-
sults derived below hold true, up to a numerical factor of
order unity, for the direct emission of �long wavelength� pho-
tons as well; a corresponding setup with LC circuit pickups
and quadratic detectors is sketched in Fig. 2. For the direct
photonic emission, one needs to replace the plasmon wave
velocity vpl by the speed of light c and set the geometry
factor �=1. The dimensionless coupling � then is reduced by
the small factor �vpl /c�3 �with vpl /c�10−2 typically� when
three-dimensional photons are emitted into space. Similarly,
the plasmon velocity vpl appearing in our expressions below
should be replaced by the velocity of light in the transmitting
medium. In the following, we will refer to the electromag-
netic modes as “photons.”

We assume that initially, at time t=−t0�0, no photons are
excited and the state of the total system �QPC and bosonic
modes� is described by the factorized density matrix �̂�−t0�
= �̂pl�−t0� � �̂QPC�−t0�. At a later time t=0, the probability
density pn��1 , . . . ,�n� to find n photons with frequencies
�1 , . . . ,�n can be defined in terms of the time-ordered evo-

lution operator Ŝ�0,−t0�=T exp�−�i /
�	−t0
0 Ĥint�t��dt��,

pn = Tr�P̂n��1, . . . ,�n�Ŝ�0,− t0��̂�0�Ŝ†�0,− t0�� , �5�

where �̂�t� is the time dependent density matrix of the elec-
tronic system �including scattering at the QPC, interactions

between electrons, etc.�, P̂n��1 , . . . ,�n� is the projection op-
erator on the state with n bosons of frequencies �i, i
=1, . . . ,n, and the trace is taken with respect to the total
system. The Taylor expansion of the evolution operator

Ŝ�0, t� up to the lowest nontrivial order provides us with the
�one photon� probability density,

p1��� = �2 �


vpl
3 �

−t0

0

dsd�ei���−s��Î�s�Î���� , �6�

where � . . . � denotes the average over the electronic system.
The next term in the series generates the two-photon prob-
ability density

p2��1,�2� =
�4

4

�1


vpl
3

�2


vpl
3 �

−t0

0

ds1ds2d�1d�2

� �T−�Î�s1�Î�s2��T+�Î��1�Î��2���

� �ei�1��1−s1�ei�2��2−s2� + ei�1��1−s2�ei�2��2−s1�

+ �1 ↔ �2� , �7�

where T+ and T− are the time ordering operators in the for-
ward and backward directions, respectively. In the following,
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FIG. 2. Setup to probe the emission of photons from a QPC into
free space. The photons are picked up by the LC circuits “up” and
“down,” which are inductively �Lu�d�,qpc� coupled to the QPC and
capacitively �Cu�d�,dot� coupled to the quantum dots. The latter are
tuned to minimal or maximal transmission and thus operate as qua-
dratic detectors. Photons absorbed in the LC-circuits modulate the
charge on the capacitors Cu�d� and, through coupling to the quantum
dots, the probe currents Iu and Id.
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we assume t0��−1 , �1,2
−1 and regularize the time integrals

in Eqs. �6� and �7� at the lower limit by introducing a small
damping factor exp�−����� with �
�. Physically, �−1 cor-
responds to the decay time of the photon excitations propa-
gating in the wave guide.

The above time integrals over current correlators can be
expressed through the spectral power of current fluctuations.
Assuming a stationary situation, the current correlators in
Eqs. �6� and �7� depend only on relative times; the second-
order noise correlator S�2� then can be defined through

S�2���� =� d�e−i����Î���Î�0��� , �8�

and the fourth-order correlator S�4� reads

S�4���1,�2,�3� =� d�1d�2d�3e−i�1�1−i�2�2−i�3�3

���Î��1 + �2 + �3�Î��2 + �3�Î��3�Î�0��� .

�9�

The noise correlators S�2� and S�4� involve irreducible current
correlators, while the expressions for p1��� and p2��1 ,�2�
are expressed in terms of reducible quantities. Expressing the
reducible correlator through irreducible ones,

�Î�s�Î���� = ��Î�s�Î����� + �Î�s���Î���� , �10�

and using the Fourier transform ��Î�s�Î�����=	�d� /2��
exp�i��s−���S�2����, we can perform the time integrals in
the expression Eq. �6� for p1���. In the stationary regime, the

average current �I�t��= Ī through the QPC is independent of
time and we obtain the intermediate form

p1��� = �2 �


vpl
3 �� d�

2�

S�2����
�� − ��2 + �2 +

Ī2

�2 + �2� .

�11�

In the limit �
�, we can approximate the Lorentzian by a �
function, � / ���−��2+�2������−��, and carry out the in-
tegral over � to arrive at the final result,

p1��� = �2 �


vpl
3 �S�2����

2�
+

Ī2

�2 + �2� . �12�

Furthermore, the contribution from the irreducible part of the
current correlator to p1��� is a factor � /��1 larger than the

contribution from the reducible part 	Ī2, as follows from the

estimate S�2����� Ī2 /�; we will drop the reducible part in
our further analysis below.

Expressing p2��1 ,�2� through irreducible correlators is
more involved: below, we keep only those terms of the re-
ducible fourth-order current correlator which give nonvan-
ishing contributions to p2 in the limit �
�,

�Î�s2�Î�s1�Î��1�Î��2�� = ��Î�s2�Î�s1�Î��1�Î��2���

+ ��Î�s2�Î��2�����Î�s1�Î��1��� + . . . , �13�

where we assume �1��2, s1�s2 and … denotes terms with

different time orderings as well as third-order cumulants pro-
viding irrelevant contributions. The probability distribution
p2 can then be expressed through the noise correlators S�4�

and S�2�; the contribution from the reducible part of the
fourth-order current correlator reads

p2
�2���1,�2� = �4 �1


vpl
3

�2


vpl
3

S�2���1�S2
�2���2�

4�2

��1 +
�2

��1 − �2�2 + �2� . �14�

This term describes the excitation of two photons due to
the uncorrelated scattering of independent electrons. For two
bosons with equal frequency ��1−�2�
�, this contribution
is enhanced by a factor 2 as compared with the probability to
emit two bosons with different frequencies �see Eq. �12��,

p2
�2���1,�2� = �p1��1�p1��2� , ��1 − �2� � � ,

2p1
2��1� , ��1 − �2� 
 � .

� �15�

This enhancement is a quantum mechanical time-
interference effect: for ��1−�2�
� we cannot know which
boson was emitted first during the measurement time �−1 and
the amplitudes of both alternatives have to be added, result-
ing in a constructive interference between them.

Next, we concentrate on the contribution p2
�4� arising from

the irreducible part of the fourth-order current correlator in
Eq. �13�. After integration over times, we arrive at the ex-
pression

p2
�4���1,�2� = �4 �1


vpl
3

�2


vpl
3

�� d�1d�2d�3

�2��3

S�4���1,�2,�3�
��2 − �1 − �2�2 + 4�2

�� 1

��1 − �1 − i����3 − �1 + i��

+
1

��1 − �1 − i����3 − �2 + i��
+ �1 ↔ �2� .

�16�

Combining Eqs. �14� and �16� and approximating the
Lorentzian in Eq. �16� by a � function, one finally arrives at
the expression for the probability density to emit two pho-
tons,

p2��1,�2� = �4 �1


vpl
3

�2


vpl
3

1

4�
Q�4���1,�2� + p2

�2���1,�2� ,

�17�

with

Q�4���1,�2� =� d�1d�3

�2��2 � S�4���1,�1 + �2,�3�
��1 − �1 − i����3 − �1 + i��

+
S�4���1,�1 + �2,�3�

��1 − �1 − i����3 − �2 + i��
+ �1 ↔ �2� .

�18�
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The resulting probability densities Eqs. �12� and �17� in-
volve second-order current correlators at positive frequencies
and integrals over fourth-order current correlators with inte-
gration kernels concentrated near positive frequencies as
well. This feature is easily understood: initially there are no
bosonic excitations, hence within our lowest-order calcula-
tion the only processes contributing to p1��� and p2��1 ,�2�
are due to photon emission—reabsorbtion processes involv-
ing negative frequency correlators show up only within a
higher-order analysis.

III. PHOTON COUNTING STATISTICS FOR A QUANTUM
CURRENT

It is a well known result due to Glauber3 that a classical
current I�t� produces a coherent state of the electromagnetic
field, with the width of the Poisson statistics of photo counts
for each mode given by the corresponding Fourier coefficient
I��� of the current. This implies that photons are emitted
independently, i.e., the joint probability to emit two photons
with frequencies �1 and �2 is in fact a product of single
photon probabilities, P2��1 ,�2�= P1��1�P1��2�.

For a quantum current the fluctuations appear due to the
scattering of separate electrons. In the scattering process, the
electrons experience an acceleration and emit Bremsstrah-
lung radiation. The fermionic statistics induces a correlated
flow of the electrons incoming from the voltage biased res-
ervoir and separate electrons are scattered one by one. The
photons emitted in the scattering of separate electrons then
inherit their fermionic correlations. On the other hand, one
electron may produce several photons during the scattering
event, in which case these photons are bunched. The devia-
tion from poissonian statistics thus is a competition between
these two processes.

Using the results of the previous section, we can find the
probability P1���= p1���d� for the emission of photons in
the frequency interval d� around � and P2��1 ,�2�
= p2��1 ,�2�d�1d�2 for the emission of two photons at
given frequencies within the nonoverlapping frequency win-
dows d�1 and d�2 around �1 , �2; for overlapping fre-
quency intervals �1��2=�, the determination of P2���
requires proper integration of the density p2��1 ,�2�.

While the results on the one and two-photon processes
provide us with only limited information on the photo count-
ing statistics, they are nevertheless sufficient to tell us about
important quantum signatures in the radiation. In particular,
the statistical properties of the emitted photons is conve-
niently described by the irreducible probability correlator,

P̄2��1,�2� = P2��1,�2� − P1��1�P1��2� . �19�

A positive sign of P̄2��1 ,�2� indicates that photons are
bunching, i.e., they are preferentially emitted simultaneously.

In the opposite case of negative correlations, P̄2��1 ,�2�
�0, the photons are antibunched, implying that the probabil-
ity to find the second photon emitted right after the first is
suppressed.

A. Single photon emission

In the following, we assume that the emitted radiation is
collected from a finite region of length L��pl and we aver-
age the current operators in Eq. �4� using a specific kernel of
the form f�x�=exp�−�x� /L�. First, we concentrate on the
single photon probability P1���. Inserting the �T=0� second-
order noise correlator16

Sx1x2

�2� ��� =
e2

�
TRei��/vF���x2�−�x1����0 − �����0 − �� ,

�20�

into Eq. �12� ���x� is the Heaviside function�, one arrives at
the result for the single photon emission probability in the
form,

P1��� =
2�

�
TR��0 − �

�

���0 − ��

1 + ��/L�2

1

�
d� , �21�

with �0=eV /
 the voltage frequency, �=vF /��100 �m
the characteristic spatial scale of the current fluctuations, and
� is the dimensionless parameter,

� = �2� e2


vpl

� vF

vpl

2

�
�2

100
. �22�

Note that with d and w of order 1 �m �Ref. 15� the geom-
etry factor � is of order unity. On the other hand, the param-
eter � is reduced due to the residual impedance mismatch
between the quantum point contact and the waveguides, cf.
Figure 1.

The probability P1��� describes the Bremsstrahlung
photo emission due to electron scattering at the barrier. Al-
though one may expect the probability P1��� to increase for
a more effective scatterer with T→0, the result is in fact
proportional to T�1−T� and vanishes in the tunneling limit.
This peculiarity of the Bremsstrahlung appears due to the
Fermi statistics: the electron coming in from the biased res-
ervoir has to relax to a state with a lower energy after the
photon emission. Since all electron scattering states of the
biased reservoir with lower energy are filled, the only possi-
bility for the electron to decay is into an empty scattering
state of the unbiased reservoir. This process requires tunnel-
ing of the electron through the barrier and hence the prob-
ability P1��� turns out proportional to T. The sharp suppres-
sion of P1��� when the photon energy 
� is larger than the
applied bias eV can be explained in the same way: an elec-
tron cannot find an empty state to emit such a “high-energy”
photon.

B. Correlated photon emission

Next, we analyze the two-photon probability P2��1 ,�2�,
see Eq. �17�, which involves irreducible fourth-order noise
correlators. Below, we consider the case of an extended in-
teraction region, where the signal is collected over a region
of size L larger than the characteristic spacial scale �
=vF /�1,2�100 �m of current fluctuations, where we con-
sider typical Fermi velocities vF�107 cm /s in GaAs hetero-
structures and frequencies in the GHz regime. The calcula-
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tion of the expression Q�4���1 ,�2� in Eq. �18� is carried out
in the Appendix, cf. Equation �A19� for the final result; the
probability P2��1 ,�2� for two-photon emission into non-
overlapping frequency intervals then reads

P2��1,�2� =
4�2

��
�RT�T − R�2���0 − �����0 − ���

− 2�RT�2���0 − �����0 − ����
d�1

�1

d�2

�2

+
4�2

����2 �RT�2���0 − �1����0 − �2���0 − �1�

���0 − �2��1 +
�2

��1 − �2�2 + �2�d�1

�1

d�2

�2
,

�23�

where ��=�1+�2 and ��=max��1 ,�2�. The first term
	1 /� in the above expression originates from the irreducible
fourth-order noise correlator Q�4�, while the second term
	1 /�2 is a contribution from the reducible part p2

�2� of the
fourth-order current correlator, see Eq. �17�.

For nonoverlapping frequency bands with ��1−�2���,
the second term in the bracket � . . . � in the reducible part is
small and what remains is equal to the product
P1��1�P1��2� of single photon probabilities. Hence, the ir-

reducible probability correlator P̄2, Eq. �19�, involves only
the first irreducible term in Eq. �23�,

P̄2��1,�2� =
4�2

��
�RT�T − R�2���0 − �����0 − ���

− 2�RT�2���0 − �����0 − ����
d�1d�2

�1�2
.

�24�

In the opposite situation where the frequency bands over-
lap, the density p2��1 ,�2� has to be properly integrated over
frequencies; the second term �of Lorentzian shape� in p2

�2�, cf.
Equation �14�, then provides a contribution � /�. For a nar-
row frequency band �� /�
1 far from the voltage fre-
quency, ��0−����, this reducible contribution dominates
over the irreducible one originating from Q�4� and the irre-
ducible probability correlator Eq. �19� is dominated by the
reducible part of the fourth-order current correlator,

P̄2��� �
4�2

��
�TR�2���0 − ����0 − ��

�0 − �

�

��

�
. �25�

The situation changes if one detects photons in the over-
lapping frequency band reaching the voltage frequency,
�1 , �2� ��0−�� ,�0�, ����0 /2. In this situation one
needs to take the remaining integrals over the frequencies
�1 , �2 in Eq. �23� exactly. The result takes the form

P2��� = −
8�2

3�
�RT�2 ����3

��2 +
4�2

3�
�RT�2 ����3

��2 , �26�

where the first term originates from the irreducible part of the
fourth-order current correlator, while the second term has its
origin in the reducible contribution. We then find that the

irreducible contribution dominates in this regime.
In summary, the irreducible correlator P̄2 at different fre-

quencies �1��2 involves a competition between bunching
�first term in Eq. �24�� and antibunching �second term in Eq.
�24��. When the frequency intervals strongly overlap we en-
counter two regimes: �1� detecting the photon in a narrow
frequency band far from the voltage frequency, ��0−��
�����, the reducible contribution of the current cor-
relator always dominates thus resulting in bunched photon
radiation; �2� measuring the photon in the frequency band
��0−�� ,�0�, ����0 /2, near the voltage frequency, the
irreducible contribution of the current correlator for a single-
channel conductor is two times larger then the reducible one
in absolute values, resulting in anti-bunched radiation.

It is the irreducible correlator P̄2 at different frequencies
�1��2 which is the most interesting quantity measuring the
nontrivial correlator Q�4�. Thus, in order to study the fourth-
order electron noise effects on the photon statistics, one
needs to be able to distinguish between the frequencies of the
emitted photon during the measurement time �−1.

We thus concentrate on the detection of photons with dis-
tinguishable frequencies. The probability correlator

P̄2��1 ,�2�, see Eq. �24�, involves two terms with opposite
signs, a positive one proportional to ���0−�1−�2� and a
negative contribution 	���0−max��1 ,�2��. Applying a
small voltage bias �0�max��1 ,�2�, the scattered electrons
do not have the possibility to emit two photons with frequen-
cies �1 and �2 due to the restriction of the Fermi statistics

on the final electron state and hence P̄2��1 ,�2�=0.
In the intermediate voltage regime max��1 ,�2���0

��1+�2, a single electron can emit only one photon, either
of frequency �1 or �2. Thus, the corresponding contribution
	���0−max��1 ,�2�� is due to the scattering of different
�fermionically correlated� electrons. At zero temperature,
these electrons arrive at the scatterer in perfect order with a
time separation �V�h /eV. Hence, the second photon is emit-
ted only after the time �V, resulting in an antibunched radia-
tion statistics and a negative probability correlator

P̄2��1 ,�2��0. When a single electron creates only one pho-
ton, the complexity of the emission process is reduced con-
siderably, allowing for the determination of the full counting
statistics of the emitted radiation.1,2

Increasing the voltage beyond 
��1+�2�, the above
single photon production is augmented by processes where
one electron emits two photons in a single scattering event;
this process generates bunched radiation and hence the cor-
responding term 	���0−�1−�2� is positive, see Eq. �24�.
The overall sign of the probability correlator P̄2��1 ,�2� then
appears in a competition between the two processes creating
photons individually or in pairs. Changing the parameters of
the quantum point contact, one can control the relative
weight of the two contributions. For example, at T=1 /2 the
two-photon process 	TR�T−R�2 vanishes while the single-
photon term 	2�TR�2 is maximal, resulting in antibunched
radiation in the whole two-photon voltage regime �1+�2
��0��1+�2+min��1 ,�2� �we consider three-photon pro-
cesses involving at least one photon with frequency �1 and
one with �2�. Alternatively, in the tunneling limit T
1, the
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emission of bunched photons is the dominant process at �0
��1+�2. A further increase of the bias voltage may lead to
multiphoton production processes, where more than two
photons are created by a single scattered electron. However,
such processes appear only in higher orders of perturbation
theory, while we have restricted ourselves to the fourth order
in the coupling constant.

Finally, we analyze the case of a multichannel conductor
in the diffusive regime. The probability correlator

P̄2��1 ,�2� for nonoverlapping frequencies in the multichan-
nel case can be obtained by summing the terms in Eq. �24�
over the channel index n with appropriate values for the
scattering coefficients Tn and Rn. The distribution of the
transmission eigenvalues T in the diffusive conductor is
given by the Dorokhov distribution function,17

��T� =
G

2G0

1

T
1 − T
, �27�

where G is the average conductance and G0=2e2 /h. Averag-

ing Eq. �24� over T, the probability correlator P̄2��1 ,�2� for
the radiation emitted from the diffusive conductor is given
by the expression �we assume �1��2�,

P̄2��1,�2� =
4�2

��

G

G0
� 11

105
���0 − �����0 − ���

−
4

35
���0 − �����0 − ����d�1

�1

d�2

�2
.

�28�

Quite remarkably, the result is negative, indicating anti-
bunched photons, even in the two-photon regime �0��1
+�2. This provides, besides the measurements of the average
current and noise, another consistency test for the Dorokhov
distribution function.

C. Measurement setup

Next, we relate the probabilities P1��� and P2��1 ,�2� to
physically measurable quantities. In a realistic experiment,
see Ref. 12, a two-terminal quantum point contact is realized
in a two-dimensional electron gas inserted between two
transmission lines, cf. Figure 1. The excited plasmon excita-
tions in the 2DEG induce an ac-electric current signal in the
two �left and right� transmission lines. The transmitted sig-
nals are independently amplified by two cryogenic amplifiers
and then passed through frequency filters �selecting proper
frequencies �1,2� followed by quadratic detectors. Thus the
signal taken at the end of each transmission line is propor-
tional to the power emitted from the QPC,

Ŵi = Ai
�in̂��i�d�i + wi, i = 1,2, �29�

where Ai is the amplification factor, n̂���d� is the photon
production rate, i.e., the number of excited photons per unit
time within the frequency band d�, and wi is a parasitic
power due to the intrinsic noise of the amplifiers and the
vacuum fluctuations of the bosonic mode. Given the life time
�or detection time� 1 /� of the photons, cf. Eqs. �12� and �17�,

the photon production rate n̂���d� relates to the photon oc-

cupation number N̂��� via n̂���d�=�N̂���.
Since the noise signals w1,2 are not correlated for the dif-

ferent transmission lines, ��w1�w2�=0, �wi=wi− �wi�, the ir-
reducible cross-correlator between the two transmission

lines, Q12= �Ŵ1Ŵ2�− �Ŵ1��Ŵ2�, involves only the irreducible
cross-correlator of the photon occupation numbers emitted
into each line,

Q12 = A1A2
�1
�2�2��N̂��1�N̂��2��� . �30�

Next, we express the photon number correlator

��N̂��1�N̂��2��� through the probabilities P1��� and
P2��1 ,�2� calculated above. Up to fourth order in perturba-
tion theory, we have

�N̂���� � p1���d� + �� d��p2��,����d� , �31�

�N̂��1�N̂��2�� � p2��1,�2�d�1d�2, �32�

where the second term in �N̂���� is a higher order correction.
As a result, the irreducible cross correlator for the photon
number then assumes the simple form,

��N̂��1�N̂��2��� = P2��1,�2� − P1��1�P1��2� , �33�

involving only the probabilities P2��1 ,�2� and
P1��1� , P1��2�; other terms are of higher order in the cou-
pling constant. The cross correlator of the emitted power
between two transmission lines then is proportional to the

probability correlator P̄2��1 ,�2�, see Eq. �19�, and the sign
of the power cross correlator directly characterizes the statis-
tics of the emitted radiation.

Finally, we connect our results with those of Beenakker
and Schomerus,1,2 which are based on the Glauber formula
for photon counting. Within this approach the relevant physi-
cal quantity to observe deviations from the poissonian statis-
tics is the variance of the detected particles: Var�N�= �N2�
− �N�2. Within lowest order perturbation theory, Var�N� can
be expressed through the probabilities P1 and P2,

Var�N� = 4P2 + P1 − P1
2, �34�

=�N� + 2P2 − P1
2. �35�

The sign of the combination 2P2− P1
2 quantifies the deviation

of the photon statistics from the poissonian result Var�N�
= �N�. Let us first concentrate on the regime where photons
are measured in a narrow frequency band ��−�� /2,�
+�� /2�, ��
�, far from the voltage frequency ��0−��
��. According to the results of Ref. 1 the quantity 2P2
− P1

2 is proportional to the measurement time �=1 /�, i.e.,
terms 	1 /�2 mutually cancel between the terms 2P2 and P1

2

�the literal correspondence between our probabilities and
those of Beenakker and Schomerus is obtained by the sub-
stitution �0→4� /��. Substituting our probabilities for this
regime, we find that, in contrast to the result of the Ref. 1,
the leading contribution to 2P2− P1

2 is proportional to �−2,
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2P2 − P1
2 �

4�2

�2 �����2�RT�2��0 − �

�

2

. �36�

Technically this difference arises from the fact, that P1
2

cannot compensate for the contribution from the reducible
current correlator in 2P2, see Eq. �23�. The physical reason
for the observed distinction between our results and the re-
sults of Ref. 1 lies in the different measurement procedure.
The Glauber photodetection procedure implies a real count-
ing of the photons, i.e., in addition to the number of photons
one gains extra information on the time of the detection. In
contrast, in our detection scheme we do not count the
photons—our probabilities P1��� and P2��1 ,�2� contain
only information about the total number of the photons at the
end of the measurement. Thus, we do not know which pho-
ton with frequency �1 or �2 was detected first. As a result,
our probability to observe two photons P2��� is two times
larger than that obtained via the Glauber detection scheme,
and hence no compensation occurs in our case. Instead, it is
the quantity P̄2= P2− P1

2 which exhibits the proper cancella-
tion and provides a measure for the nontrivial correlations in
the photon statistics in our analysis. The same discussion
applies to the regime where photons are detected in the fre-
quency band ��0−�� ,�0�, ����0 /2; our probability
P2��� is again twice larger than the result in Ref. 2.

IV. MEASUREMENT OF THE FOURTH-ORDER CURRENT
CORRELATORS

As mentioned in the introduction, the measurement of the
photon statistics also reveals information on the current fluc-
tuations in the QPC. In particular, the probabilities P1���
and P2��1 ,�2� provide information on the second and
fourth-order noise correlators at finite frequencies. Further-
more, the measurement of high-order current correlators, or
alternatively, high-order transmitted charge cumulants, is a
nontrivial issue. It turns out, that the measurement of the

irreducible correlator P̄2 provides direct access to the fourth-
order charge correlator.

The charge statistics is conveniently analyzed in a Gedan-
ken experiment, where the transmitted charge is measured
with the help of a spin-1/2 counter.6,18 Using the expression

Q̂t=	0
t Î���d� for the transmitted charge, the corresponding

generating function involves the specific time ordering

���� = �T−�exp�i�Q̂t/2��T+�exp�i�Q̂t/2��� , �37�

where T− and T+ denote backward and forward time-ordering
operators. The resulting statistics turns out to be binomial
with the proper electron charge describing the transmitted
carriers.6 The fourth-order �zero frequency� charge cumulant
is given by a weighted combination of various time order-
ings,

��Q̂t
4�� =

1

16
�

0

t

d�1d�2d�3d�4���T−�Î�1
Î�2

Î�3
Î�4

���

+ 4��T−�Î�1
Î�2

Î�3
�Î�4

�� + 6��T−�Î�1
Î�2

�T+�Î�3
Î�4

���

+ 4��Î�1
T+�Î�2

Î�3
Î�4

��� + ��T+�Î�1
Î�2

Î�3
Î�4

���� , �38�

and the result assumes the form

��Q̂t
4�� = 2e4T�1 − T��6T2 − 6T + 1�

eVt

h
, �39�

with the poissonian limit restored in the tunneling regime.
While it is clear that this �binomial� result manifests itself

when the charge transport is analyzed with a spin-1/2
counter, the question can be posed whether a more realistic
experiment, e.g., the present photon detection experiment,
can be used to measure this result.

Indeed, the measurement of the probability correlator

P̄2��1 ,�2� tests the time-ordered fourth-order current cor-
relator, reminding about the spin-1/2 detection scheme of
Ref. 6, cf. Equations �7� and �38�. Assuming an extended
measurement where the emitted radiation is collected from a
region near the QPC with a size L larger than the character-
istic length �, the explicit calculation of the frequency inte-

grals in Eq. �17� gives a result for P̄2��1 ,�2� at low frequen-
cies �1 , �2
eV /
 and ��1−�2���, see Eq. �24�, which
coincides with the fourth-order charge correlator in Eq. �39�,

P̄2��1,�2� = �2T�1 − T��6T2 − 6T + 1�
eV

h�

d�1d�2

�1�2
. �40�

We thus conclude that for an extended measurement scheme

with L��, the probability correlator P̄2��1 ,�2� at low fre-
quencies is proportional to the fourth-order charge cumulant

��Q̂t
4�� with t=�−1.

V. CONCLUSION

We have presented a perturbative calculation of the statis-
tics of photon emission from electrons scattered at a quantum
point contact. In our analysis, we determine the probability
densities pn to find n photons with prescribed frequencies
�1 , . . . ,�n during a measuring time t0�1 /�; our perturba-
tive calculation includes terms up to fourth order in the in-
teraction Hamiltonian and allows us to calculate one-�p1�
and two-�p2� photon processes. These probability densities
are related to second- and fourth-order current correlators
and hence measuring the photon statistics provides also in-
formation on higher order current correlators.

Our central quantity is the irreducible probability cor-

relator P̄2��1 ,�2�= P2��1 ,�2�− P1��1�P1��2�, which we
find to provide the most valuable information if measured at
different frequencies ��1−�2���. Its sign provides infor-
mation on the statistics of photon emission, which arises
from a competition between bunching due to for multiphoton
emission from one electron and anti-bunching imprinted onto
the photons by the regular stream of incident electrons. The
character of the emitted radiation can be tuned between
bunched and anti-bunched by changing the voltage V and the
transmission T across the QPC. Measuring the power cross-
correlator in different transmission lines as done in a recent
experiment12 provides experimental access to this quantity.
Within the usual photo detection scheme instead,1,2 the role

in P̄2= P2− P1
2 is played by the deviation of the variance from

the Poisson value, Var�N�− �N�=2P2− P1
2. The discrepancy

in the factor 2 in front of P2 is a consequence of the different
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measurement techniques, providing more detailed informa-
tion in the photo detection scheme. This rather innocent
looking difference in fact requires the definition of a different
measurement quantity for the two cases of “counting” �set of
single photon measurements� and “collecting” �single projec-
tion of a photon number state at the end�; the former requires
the analysis of Var�N�− �N�, while the latter forces one to

discuss P̄2. Finally, we have shown that the irreducible cor-

relator P̄2��1 ,�2� coincides �up to a scale factor� with the

fourth-order charge cumulant ��Q̂t
4�� and, hence, provides

practical access to this quantity.
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APPENDIX: FOURTH-ORDER CURRENT CORRELATOR

Using the scattering matrix approach, we first calculate
the irreducible fourth-order current correlator in the time rep-
resentation,

C�x�,t�� = ��Î�x1,t1�Î�x2,t2�Î�x3,t3�Î�x4,t4��� , �A1�

and then determine the expression Q�4���1 ,�2� in Eq. �18�.
We assume a scattering process described by energy inde-

pendent scattering amplitudes r, r̄, and t within a region near
the QPC located at the origin x=0; here, r and r̄ denote
reflection amplitudes for electrons coming from the left and
right reservoirs, and t is the transmission amplitude. Linear-
izing the energy-momentum dispersion relation near the
Fermi level, the electron current operator takes the form,

Î�x � 0,t� =
e

h
� d�d���Tâ�

†â�� + rt�â�
†b̂�� + r�tb̂�

†â��

+ Rb̂�
†b̂���e

i��−����t−x/vF�/
 − b̂�
†b̂��e

i��−����t+x/vF�/
,

�A2�

Î�x � 0,t� = −
e

h
� d�d���Râ�

†â�� + r̄�tâ�
†b̂�� + r̄t�b̂�

†â��

+ Tb̂�
†b̂���e

i��−����t+x/vF�/
 + â�
†â��e

i��−����t−x/vF�/
,

�A3�

where â� and b̂� are annihilation operators for electron scat-
tering states incoming from the left and right reservoirs, re-
spectively �we assume spinless electrons; T= �t�2 and R=1
−T are transmission and reflection probabilities, vF is the
Fermi velocity�.

The current operator Î�x , t� can be written as a sum

Î�x , t�= Î−��−�+ Î+��+� of outgoing and incoming currents
I−��−� and I+��+� which depend only on the retarded variables
��= t� �x� /vF. Below, we concentrate on the current fluctua-
tions to the right of the barrier. Introducing an additional
index �=� denoting the incoming and outgoing currents,
we rewrite the current operators in a compact form,

Î����� =
e

h
� d�d��ei��−�����/
�

ij

ĉi
†���Aij

�ĉj���� , �A4�

where we have defined ĉ1���= â�, ĉ2���= b̂�, and the 2�2
matrices A�

A+ = � T t�r

r�t R

, A− = �0 0

0 − 1

 , �A5�

defined to the right of the barrier. In order to calculate the
fourth-order current correlator C�x� , t��, we have to average
over all possible products of four current operators,

C������ = ��Î�1��1
�1�Î�2��2

�2�Î�3��3
�3�Î�4��4

�4��� , �A6�

with C�x� , t��=���C������. Below, we use the shorthand �i
�i =�i

and A�i =Ai and put 
=1. Using Wick’s theorem and taking
averages over the reservoirs, we arrive at the expression

C������ =
e4

�2��4� �
i=1

4

d�i�ei�1��1−�2�ei�2��2−�3�ei�3��3−�4�ei�4��4−�1� Tr�N��1�A1N̄��4�A4N��3�A3N��2�A2�

+ ei�1��1−�4�ei�2��2−�1�ei�3��3−�2�ei�4��4−�3� Tr�N��1�A1N̄��2�A2N̄��3�A3N̄��4�A4�

− ei�1��1−�4�ei�2��2−�3�ei�3��3−�1�ei�4��4−�2� Tr�N��1�A1N̄��3�A3N��2�A2N̄��4�A4�

− ei�1��1−�3�ei�2��2−�1�ei�3��3−�4�ei�4��4−�2� Tr�N��1�A1N̄��2�A2N̄��4�A4N��3�A3�

− ei�1��1−�3�ei�2��2−�4�ei�3��3−�2�ei�4��4−�1� Tr�N��1�A1N̄��4�A4N��2�A2N̄��3�A3�

− ei�1��1−�2�ei�2��2−�4�ei�3��3−�1�ei�4��4−�3� Tr�N��1�A1N̄��3�A3N̄��4�A4N��2�A2�� , �A7�
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with the 2�2 matrices N��� and N̄��� defined as

N��� = �nL��� 0

0 nR���

, N̄��� = 1 − N��� , �A8�

and nL��� and nR��� the Fermi distribution functions of the left and right electronic reservoirs. Next, we integrate over the
energies in Eq. �A7� using

� d��1 − nL/R����ei�� =
i��e�i�0�/2

sinh����� + i����
,

� d�nL/R���ei�� =
− i��e�i�0�/2

sinh����� − i����
, �A9�

where � is the temperature of the fermionic reservoirs and �0=eV /
 is the voltage frequency defined by the bias voltage V
applied to the QPC. �� ,���0 are regularization parameters; for an energy independent transparency, they are of order ��
�
 / �Ec−EF� and ���
 /EF, where Ec is the energy width of the conduction band and EF the Fermi energy. Below, we define
a single regularization parameter �=max��� ,��� and assume the zero temperature limit �=0. After integration and using these
simplifications we obtain the expression

C������ =
e4

�2��4�−
Tr�p��1 − �4�A1p��2 − �1�A2p��3 − �2�A3p��4 − �3�A4� + c . c .

��1 − �4 − i����2 − �1 + i����3 − �2 + i����4 − �3 + i��

+
Tr�p��1 − �4�A1p��3 − �1�A3p��2 − �3�A2p��4 − �2�A4� + c . c .

��1 − �4 − i����3 − �1 + i����3 − �2 + i����4 − �2 + i��

+
Tr�p��1 − �3�A1p��2 − �1�A2p��4 − �2�A4p��3 − �4�A3� + c . c .

��1 − �3 − i����2 − �1 + i����4 − �2 + i����4 − �3 + i�� � , �A10�

where p��� is the 2�2 diagonal matrix,

p��� = �ei�0� 0

0 1

 . �A11�

Next, we consider the irreducible contribution to the prob-
ability P2��1 ,�2�, see Eq. �17�. This contribution is propor-
tional to the frequency integral over the fourth-order noise
correlator S�4���1 ,�1+�2 ,�2� with a specific kernel. As-
suming a stationary situation �i.e., only relative times are
relevant� and changing from frequency to time variables in
Eq. �18�, we have to calculate the expression

Q�4���1,�2� = �
−�

0

d�1�
0

�

d�2C̃��1,�1 + �2,�2� ,

�e−i�1��1+�2� + e−i��1�1+�2�2� + �1 ↔ �2� , �A12�

where we have defined

C̃��1,�,�2� =� d�C̃��1,�,�2�e−i��. �A13�

Here, C̃��1 ,�2 ,�3� is the coordinate averaged correlator
C�x� , t�� expressed in terms of the relative time variables,

C̃��1,�2,�3� =� d4xF�x��C�x� ;�1 + �2 + �3,�2 + �3,�3,0� ,

�A14�

with the kernel F�x��=�i f�xi� describing the coupling region
of the plasmon.

Next, we find the nonvanishing contributions C̃����1 ,�

�0,�2� to the correlator C̃��1 ,� ,�2�=���C̃����1 ,� ,�2� de-
fined in Eq. �A13�; these are identified as those with �� � ��
−−−−� , �+−−−� , �−+−−� , �−−+−� , �−−−+� , �−++−� , �+−+−� , �
−+−+� , �+−−+��. The corresponding correlators can be writ-
ten in the form,

C̃����1,�,�2� =
e4

4�3ei���1+�2�/2� d4xF�x��I�
�� �z1,z2�

�exp� i���1�x1� + �2�x2� − �3�x3� − �4�x4��
2vF

� ,

�A15�

where we have introduced the new retarded variables,

z1��1,�2� = �1 +
�1�x1� − �2�x2�

vF
,

z2��3,�4� = �2 +
�3�x3� − �4�x4�

vF
, �A16�

and the functions I�
�� �z1 ,z2� have the form,
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I�
−−−− = 2RT�T − R�2���0 − ���cos��0�z1 − z2�/2�

sin���0 − ���z1 + z2�/2�
�z1 + z2�z1z2

+ z2 → − z2�
+ 2�RT�2���0 − �/2�� sin���0 − �/2��z1 + z2��

�z1 + z2�z1z2
+ z2 → − z2� ,

I�
+−−− = RT���0 − ��e−i�0z1/2���Re−i�0z2/2 + Tei�0z2/2�

sin���0 − ���z1 + z2�/2�
�z1 + z2��z1 − i��z2

+ z2 → − z2�
+ 2R cos��0z2/2�� sin���0 − ���z1 − z2�/2�

�z1 − z2�z1z2
+ z2 → − z2�
 ,

I�
−++− = RT���0 − ��ei�0�z1+z2�/2�� sin���0 − ���z1 + z2�/2�

�z1 + z2�z1z2
+ z2 → − z2� −

sin���0 − ���z1 + z2�/2�
�z1 + z2��z1 − i���z2 − i��
 ,

I�
+−+− = RT���0 − ��ei�0�z2−z1�/2�� sin���0 − ���z1 + z2�/2�

�z1 + z2�z1z2
+ z2 → − z2� +

sin���0 − ���z1 − z2�/2�
�z1 − z2��z1 − i���z2 − i��
 .

The remaining functions I�
�� can be expressed through the four above,

I�
−+−−�z1,z2,�� = I�

+−−−�− z1,z2,− �� ,

I�
−−+−�z1,z2,�� = I�

+−−−�− z2,z1,− �� ,

I�
−−−+�z1,z2,�� = I�

+−−−�z2,z1,�� ,

I�
−+−+�z1,z2,�� = I�

+−+−�− z1,− z2,− �� ,

I�
+−−+�z1,z2,�� = I�

−++−�− z1,− z2,− �� . �A17�

Finally, we have to perform the time integrals over �1 and �2 in Eq. �A12�, we regularize the divergent denominators in
I�

�� �z1 ,z2� using the Sokhotsky formula,

lim
�→0+

1

z � i�
= P1

z
� i����z� , �A18�

where the �-function has to be understood as ����z�=� / �z2+�2� with a finite width �. The correlator Q�4���1 ,�2� then takes
the form

Q�4���1,�2� =
e4

2�
RT���0 − �1 − �2���0 − �1 − �2�� d4xF�x����T − R�2e−i��1/vF���x1�−�x4��e−i��2/vF���x2�−�x3��

+
T − R

2
�ei��1/vF���x1�+�x4��e−i��2/vF���x2�−�x3��g��x1� + �x2�� + e−i��1/vF���x1�+�x4��e−i��2/vF���x2�−�x3��ig��x3� + �x4�� + �1 ↔ �2�

+
1

4
g��x1� + �x2��g��x3� + �x4���e−i��1/vF���x1�−�x4��ei��2/vF���x2�−�x3�� + e−i��1/vF���x1�+�x3��ei��2/vF���x2�+�x4�� + �1 ↔ �2��

− 2
e4

2�
�RT�2���0 − max��1,�2����0 − max��1,�2��� d4xF�x��e−i��1/vF���x1�−�x4��e−i��2/vF���x2�−�x3��, �A19�

where g�x�=1−���x�+���−x�, with ���x�=	xdy���y� a Heavisidelike function with a finite width �=vF� defined by the
regularization parameter �; with the parameters ���
 / �Ec−EF� and ���
 /EF, we obtain ���F of order of the Fermi
wavelength. Then g��x��=1 for �x�
� and g vanishes in the opposite case.

For a large collection area with ����L, we can drop all terms containing a factor g�x� in Eq. �A19�; the integration over
x� generates a factor ��vF /��4 and we arrive at the result Eq. �23� �we approximate the factors 1 / �1+�2 /L2��1�.

Taking into account the spin 1/2 of the electron, the above expression has to be multiplied by a factor 2. Similarly, in a
multichannel situation, we have to sum the correlators Qn

�4���1 ,�2� for all channels n with transparency Tn.
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